Automatic Term Extraction Using Log-Likelihood Based Comparison with General Reference Corpus
نویسندگان
چکیده
In the paper we present a method that allows an extraction of singleword terms for a specific domain. At the next stage these terms can be used as candidates for multi-word term extraction. The proposed method is based on comparison with general reference corpus using log-likelihood similarity. We also perform clustering of the extracted terms using k-means algorithm and cosine similarity measure. We made experiments using texts of the domain of computer science. The obtained term list is analyzed in detail.
منابع مشابه
Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation
Bilingual termbanks are important for many natural language processing (NLP) applications, especially in translation workflows in industrial settings. In this paper, we apply a log-likelihood comparison method to extract monolingual terminology from the source and target sides of a parallel corpus. Then, using a Phrase-Based Statistical Machine Translation model, we create a bilingual terminolo...
متن کاملHedges in English for Academic Purposes: A Corpus-based study of Iranian EFL learners
Hedges, as tools to express tentativeness and doubt, have been studied in plenty of research papers in the Iranian EFL research setting. However, their use in a learner corpus, portraying Iranian learner English, is in need of more research attention. With this end in view, this study aimed at investigating how Iranian EFL learners who have majored in English-related fields in Iran deployed hed...
متن کاملRecognition of non-domain phrases in automatically extracted lists of terms
In the paper, we address the problem of recognition of non-domain phrases in terminology lists obtained with an automatic term extraction tool. We focus on identification of multi-word phrases that are general terms and discourse function expressions. We tested several methods based on domain corpora comparison and a method based on contexts of phrases identified in a large corpus of general la...
متن کاملExtracting Chinese Multi-Word Units from Large-Scale Balanced Corpus
Automatic Multi-word Units Extraction is an important issue in Natural Language Processing. This paper has proposed a new statistical method based on a large-scale balanced corpus to extract multi-word units. We have used two improved traditional parameters: mutual information and log-likelihood ratio, and have increased the precision for the top 10,000 words extracted through the method to 80....
متن کاملAutomatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010